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The generation of instability waves in free shear layers is investigated theoretically. 
The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate 
which is exposed to sound excitation. For this model the forced instability waves are 
calculated. The shear-layer excitation by a source farther away from the plate edge 
in the downstream direction is very weak while upstream from the plate edge the 
excitation is relatively efficient. A special solution is given for the source a t  the plate 
edge. Any type of source farther away from the plate edge produces a parabolic 
pressure field near the edge. For this latter, fairly general case, a reference quantity 
is found for the magnitude of the excited instability waves. The theory is then 
extended to two streams, one on each side of the shear layer, having different 
velocities and densities. Furthermore, the excitation of a shear layer in a channel is 
calculated. The limitations to the theory and some aspects related to experiments are 
discussed. In particular, for a comparison with measurements, numerical com- 
putations of the velocity field outside the shear layer have been carried out. 

1. Introduction 
In previous investigations it has been shown that the excitation of instability 

waves in a jet which leads to large-scale structures can enhance the radiated 
broadband jet noise significantly (Bechert & Pfizenmaier 1975a; Moore 1977 ; 
Deneuville & Jaques 1977 ; Schmidt 1978 ; Hodge & Tam 1981). The excitation of the 
jet can be produced either by sound or by vorticity convected with the jet flow. The 
jet shear layer is excited even in such situations where, inadvertently, sound is 
generated by the apparatus to produce the flow itself (Brown & Roshko 1974; 
Dziomba & Fiedler 1985; Fiedler & Mensing 1985). 

In the case of acoustical excitation of a jet it has also been demonstrated that the 
production of instability waves in the jet can extract energy from the exciting sound 
field (Mechel & Ronneberger 1965; Howe 1979, 1980; Bechert 1980; Crighton 1981; 
Vasudevan, Nelson & Howe 1985). To give an example, a t  M = 0.3 and kR = 0.1 
(M = jet Mach number, R = nozzle radius and k = acoustic wavenumber) only 1 Yo 
of the sound power transmitted through the nozzle is found in the radiated far 
field. 

Nevertheless, not much knowledge has been gained on how the magnitude of 
instability waves is related quantitatively to exterior perturbations. In  the present 
model for this coupling a simplified configuration is considered. A thin semi-infinite 
shear layer is assumed to be shed from a thin and rigid semi-infinite plate. The shear 
layer is exposed to  acoustical excitation. This simple configuration is tractable 
mathematically and the analysis provides some insight into the interaction which 
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would be less readily obtained for a plane or a circular jet. Previous papers, such as 
those by Orszag & Crow (1970), Crighton & Leppington (1974), Mohring (1975) and 
Bechert & Michel(l974, 1975) tackled the same issue, but did not produce a sufficient 
data base for a quantitative comparison with experiments. The present paper may 
not seem to provide significant theoretical progress, but it does provide this lacking 
data base. It is a condensed and updated version of a fairly elaborate report (Bechert 
1982). Thus, only basic ideas will be outlined and results will be discussed without 
providing all details of the calculations. 

2. One-stream model 
Figure 1 shows the simplified configuration which will be modelled mathematically. 

First, we shall assume that there is no flow above the shear layer. This condition will 
be relaxed later. The acoustic field is assumed to be produced by a two-dimensional 
pulsating source outside the shear layer in the fluid at rest. The following simplifying 
assumptions are introduced : (i) two-dimensional problem ; (ii) parallel mean flow ; 
(iii) all fluctuating quantities harmonic in time, i.e. proportional to ePiwt ; (iv) inviscid 
flow ; (v) linearized problem ; (vi) incompressible flow ; (vii) infinitesimally thin shear 
layer. 

The first five simplifications are common in the stability theory of free jets. The 
assumption of an inviscid flow works quite well a t  sufficiently high Reynolds number 
(Michalke 1965 ; Freymuth 1966). The linearization is valid for relatively low 
fluctuation velocities which are found in the interaction region near the end of the 
splitter plate, as can be concluded from experiments near a nozzle discharge edge 
(Freymuth 1966 ; Bechert & Pfizenmaier 1975b). The assumption of incompressibility 
is equivalent to the restriction to small Mach numbers and small Helmholtz numbers, 
where the Helmholtz number is defined as the ratio of the typical length of the 
problem to the wavelength of the sound waves. For the major part of this paper, 
small Helmholtz number means that the distance between source and plate edge 
should be much smaller than the acoustical wavelength. However, if we know the 
excitation field around the plate edge and our interest is restricted to the evaluation 
of the shear-layer excitation there, then the relevant length is the interaction region 
close to the edge. In  this latter case, only the interaction region has to be small 
compared with the acoustical wavelength. It will turn out that this interaction region 
has a dimension of the order U,/ f  (where Uo is the mean flow velocity and f the sound 
frequency). Consequently, we should have U , / f  4 a,/f, where ao/f is the acoustic 
wavelength. This is equivalent to M = O,/a, 4 1, i.e. again the condition of small 
Mach number. The seventh assumption, the restriction to an infinitesimally thin 
shear layer will limit the validity range of the theory to the case where the shear- 
layer thickness is small compared with the wavelength of the instability waves. In  
other words, the Strouhal number f S / U ,  should be small. 0 is the momentum 
thickness of the shear layer. This latter restriction will be discussed in detail in 
$5.2. 

The classical approach would be to fulfil the boundary conditions a t  both sides of 
the shear layer. This means that both the displacement h and the pressure p should 
be equal there. The displacement h and the velocity v are connected in the following 
way : 

ah - a h  u=-+u-. 
at ax 
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FIQURE 1 .  Configuration of the analytic model. 

For a harmonic motion we find therefore (see also figure 1) 

. u, av 
v 2  = v 1 + 1 - 2 .  

w ax 
This is an equation connecting the v-components of the fluctuation velocities a t  both 
sides of the shear layer. 

A second equation for v1 and v2 will be derived subsequently from a consideration 
of the pressure field and its gradients a t  the shear layer. We start out by taking the 
x-derivative of the first Euler equation and the y-derivative of the second Euler 
equation. Both derivatives are added and some terms are eliminated using the 
continuity equation. We end up with 

av a u  
v2p = -2p--. 

ax ay (3) 

In our model (see figure l),  the mean velocity profile jumps from 0 = 0 for positive 
y to 0 = U ,  for negative y. Thus, the right-hand side of (3) exists only in the shear 
layer. Equation (3) can be considered as a non-homogeneous, Laplacean equation 
with a source distribution of varying strength in the shear layer. It should be stressed 
here that these sources in the shear layer are pressure sources. Obviously, sources of 
matter would violate the continuity equation. A discussion on the nature of these 
sources is given in Bechert (1982, appendix B). The sources in the shear layer consist 
of a monopole-like contribution which yields a S(y)-term and a dipole-like 
contribution which produces a G'(y)-term. The dipole term becomes negligible for 
vanishing shear-layer thickness. Thus, the pressure field radiated by the shear layer 
is symmetrical with respect to y. 

At the surface of the semi-infinite plate we have v and avlax equal to zero. 
Consequently, the pressure source strength is zero on the plate surface. The only 
other location where V2p is non-zero is at the location of the exterior pulsating source 
(see figure 1). 

The basic idea of the present approach is that the pressure distribution in the 
whole field can be split into two contributions : (i) a pressure field which is symmetric 
with respect to the shear layer and which is caused by the pressure source 
distribution in the shear layer itself; (ii) a pressure field which is produced by the 
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exterior forcing, e.g. a pulsating source. The pressure fluctuations of this contribution 
are transmitted through the shear layer. The pressure gradient of this contribution 
is continuous through the shear layer and therefore it is antisymmetric close to the 
shear layer. 

As a result of this splitting process we have 

) (4) 
Pl = Pl,+Plf; 

zll = W I S  + w1f;  

Pz = PZS+PZf, 

VZ = vzs + WZf.  

The index s stands for shear layer and the index f labels the exterior forcing. The 
boundary conditions a t  both sides of the shear layer have to be fulfilled by the 
summations of the individual constituents, i.e. by w1 and w2, as before. On the other 
hand, we have some new information : since the induced field of the pressure sources 
in the shear layer is symmetrical (it is created by sources of symmetrical directivity 
in a field with symmetrical boundary conditions) we obtain 

and for the continuous pressure of the exterior forcing 

These conditions for the pressure gradients in the y-direction can be inserted into the 
second Euler equation which gives 

. uo aw,, 
wzs+l-- = - WlS, ax 

.go auzf - 
W z f + l - -  - Wlf .  

w ax 
Equations (7) and (8) can be added using (4): 

.go av, 
w ax 

w,+1--+w1 = 2Wlf. 

(7)  

(9) 

This is the desired second equation for v,and v2. The velocity wlf is not an unknown 
quantity; it is the velocity that is generated by the exterior forcing without the mean 
flow being present, but in the presence of the semi-infinite plate. Equation (2) can be 
inserted into (9) to obtain the non-homogeneous differential equation 

The complete solution of this type of differential equation is 

(12) 
w with the abbreviation 

4,z ==-( i +  - 1). 

The first two terms of (1 1) are the solutions of the homogeneous differential equation. 
They are identical with the well-known spatial instability waves for an infinitesimally 

UO 
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thin shear layer, extended from x = - co to x = + co, which we shall call the 
Helmholtz solutions. The constants C, and C, have the dimension of a velocity and 
will be determined with the boundary conditions. Equation ( 1  1) is a general solution 
and it has to be evaluated for different excitation velocity distributions vlf. Before 
doing this, however, we shall discuss the question of the Kutta condition in 
conjunction with the determination of the constants C, and C,. 

2.1. The Kutta condition 
The following discussion will deal with a fairly general case, where a sound source of 
any kind is farther away from the trailing edge of the semi-infinite plate. In a 
previous paper (Bechert & Michel 1975) it has'been shown that the induced velocity 
close to the trailing edge is then 

V l f  = 7,  

where the coefficient C, depends on the strength, location and type of the source. 
Equation ( 1  1 )  can be evaluated with this distribution 

(13) 
c3 

XZ 

For x < 0 we have v, = 0. Using the condition of equal displacement on both sides 
of the shear layer, (2), we can also determine v2. 

The two velocity distributions on both sides of the shear layer have to produce 
equal pressures. We could therefore require equal ap/ax on both sides. The first Euler 
equation relates this pressure gradient to the u-velocity component 

Consequently, the pressure equilibrium condition can be written in terms of u- 
velocities : 

i 0  au 
u, = u , + O l  for x >, 0. ax 

We focus first on the induced u-velocity distribution of the non-homogeneous part 
of our solution (the term in (14) with coefficient 12,). We can proceed in two different 
ways : (i) For the non-homogeneous parts of wl and v 2  we compute the u-distributions 
numerically. Exploiting the continuity equation we use a source distribution 
approach. The numerical data for u1 and u2 can be found in Bechert (1982). (ii) We 
derive a separate differential equation for u1 similar to that for v1 (see (10)). The free 
constants of the u1 solution are adjusted so that the resulting solution fits to the 
behaviour of the non-homogeneous part of (14) for large values of x. In  this way we 
obtain an analytical solution for u,, and, by a similar calculation also one for u2. The 
full derivation is given in Bechert (1982). We find 

w ni Ti% ""2%) w xi T z z  e^iz) 
u1 = ic T , u2 = c T -+- . (17) u, A,t A,t u, A,t A,; 

Both procedures, (i) and (ii), yield the same numerical values. Equations (17) 
inserted into (16) show pressure equilibrium. Thus, the non-homogeneous part of (14) 
alone fulfils the conditions of equal displacement and equal pressure a t  both sides of 
the shear layer. Consequently, the homogeneous part of the solution has to fulfil the 
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condition of pressure equilibrium by itself independently. To investigate that, we 
have to determine the u-velocity field of an instability wave of the type v K eA1,Zx, 
truncated for x < 0. By a source-distribution approach (Bechert 1982) we find u in 
terms of exponential integrals. After having evaluated these solutions €or both sides 
of the shear layer, we have to insert them into (16) to check the pressure equilibrium. 
We find that there is no non-zero value of C, and C, that fulfils (16). Thus, only the 
non-homogeneous part of (14) is left. As a consequence, the flow leaves the trailing 
edge tangentially because v1 K x1.5 for small x. This is equivalent to a Kutta 
condition. Thus, mathematically speaking, the Kutta condition is here tied to the 
symmetry of the pressure field radiated by the shear layer. This symmetry constraint 
is based on a consideration of the interior of the free shear layer (Bechert 1982, 
Appendix B). If we relaxed the symmetry constraint, other solutions not fulfilling 
the Kutta condition could be produced easily (Bechert & Michel 1975; Orszag & 
Crow 1970). 

A complete investigation, however, requires also a discussion of under which 
circumstances deviations from the Kutta condition may occur. Clearly, our approach 
will break down for shear layers where the wavelength of the instability waves 
becomes comparable with the shear-layer thickness. Then, a symmetry argument for 
the pressure field cannot possibly hold any more. It should be also mentioned that 
statements on the flow within the shear layer very close to the edge are not possible 
with our present theoretical approach. 

The way in which the Kutta condition starts to fail is clearly exhibited in our 
previous experiments (Bechert & Pfizenmaier 1975 6 ) .  The envelope h(x) of the shear- 
layer motion does not everywhere follow the expected behaviour. In  particular very 
close to the trailing edge we find a very small region with a parabolic shape. This is 
because the convective terms in the equations of motion, which would require a 
singular behaviour of the fluctuating flow field under these circumstances, are absent 
in a real flow near a wall. Nevertheless, if one judges from the field shape outside this 
particular edge region, it still looks as if the Kutta condition is essentially 
maintained. At high Strouhal numbers, however, this tiny parabolic region near the 
edge is growing rapidly and it can be assumed that then, and also in the flow outside 
the shear layer, the Kutta condition is not maintained any more. A more 
comprehensive discussion of this issue is given in Crighton’s (1985) survey paper. 

There are other examples of flows where the pressure-symmetry approach is 
invalid, such as in the wake flows downstream of a cylinder or a plate with a blunt 
trailing edge. Obviously, these flow configurations are different from ours. In 
addition, the wavelength of the instability waves that occur is comparable with the 
wake width. Moreover, wake flows can be absolutely unstable, which means that, for 
these latter flows, the group speed a t  a certain frequency becomes zero and temporal 
wave growth occurs. Or, in other words, the wake flow blows up locally exhibiting 
one fluctuation frequency which is determined by the flow itself and not by the 
exterior excitation (Koch 1985; Huerre & Monkewitz 1985; Bechert 1985). The 
fluctuation magnitude in these latter flows is determined by nonlinear effects and can 
be changed only by very strong exterior forcing. 

On the other hand, there are flows which are convectively unstable. These flows 
cannot maintain perturbations by themselves. An impulsive excitation causes a 
perturbation which is swept downstream and dies out eventually a t  the location of 
the original excitation. Free shear layers belong to this group (Huerre & Monkewitz 
1985; Bechert 1985). The fluctuations exhibited by this class of flows depend on 
exterior excitation only. In our theory, we predict the excitation for the special case 
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of a thin shear layer exposed to a fluctuating forcing field, without any claim of 
further generality. The limits of the validity of this theory are worked out in the 
second, experimental part of this research (Bechert & Stahl 1988). 

2 .2 .  A reference quantity 
It is of general concern in shear-layer experiments to have a reference quantity for 
the acoustical excitation. In  our above derivation, we have divided the pressure field 
into two constituents: (i) the pressure field radiated by the shear layer, which is 
symmetrical; and (ii) the pressure field of the excitation which is continuously 
transmitted through the shear layer and which is antisymmetrical close to the shear 
layer. 

Two microphones upstream of the trailing edge and arranged as in figure 1 can be 
used to isolate the excitation field. If we take the difference of the pressures p ,  -p ,  
= Ap12 we eliminate the symmetrical shear-layer signal completely. By a fairly 
simple calculation (Bechert 1982) we can also relate the excitation velocity 
distribution vl f  to the pressure difference Ap12 : 

In this equation 1 is the distance between microphones and plate edge (see figure 1) .  
The coefficient i is equivalent to a 90" phase shift. The coefficient C, in (17) is also 
determined by (18). We have, for example, for u2t  

If we are mainly interested in the modulus of u2 for distances slightly downstream 
of the plate edge where the decaying wave has vanished, we find 

We shall verify this equation experimentally in order to test the present theory. In  
the experiments we can use Ap12/li as a reference quantity because it does not depend 
on the mean flow conditions, or we non-dimensionalize the fluctuating velocity in the 
following way 

It is also convenient to non-dimensionalize the downstream distance x 

So we obtain for (20) 

2.3. The u-velocity jield 

The fluctuating quantity that can be measured most easily and accurately is the 
velocity u2 in the flow region ( y  < 0, see figure 1). This is the reason why this 
particular quantity has been computed numerically. A source-distribution approach 

t Unfortunately, this equation has been mistyped in Bechert (1982). 
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FIGURE 2. Computed distribution of 13,1 for various 2 and 8 :  ---, downstream amplified 
instability wave alone ; -.-, acoustic excitation alone. 

is used to compute u2 from v 2  a t  y = -0. v 2  is given analytically for all x. In figure 
2 the computed curves of the modulus of u2 are plotted in non-dimensionalized form 
versus y” = yw/i!7,, for different downstream distances Z = xw/O, from the plate edge. 
The vertical scaling in figure 2 is logarithmical. Therefore, an exponential curve 
appears as a straight line. Such straight lines are found for locations farther 
downstream of the edge. At Z = 2, for example, which corresponds to wavelength 
of the instability waves, the induced field is already dominated by the amplified 
instability wave. On the other hand, upstream of the edge a t  2 = -2 ,  the u- 
fluctuation is governed by the acoustic excitation field alone. For these two regions 
we also find fairly simple asymptotic equations (see Bechert 1982). 

3. Two streams with different densities 
The condition of equal displacements on both sides of the shear layer is also valid 

in this more general case. For the pressure we have the same conditions as before, i.e. 
we have V z p  = 0 outside the shear layer and outside the location of the sound source. 
In  addition, the pressure has to be the same on both sides of the shear layer. For 
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equal boundary conditions above and below the shear layer we can use the previous 
approach using the symmetry and antisymmetry of pressure gradients. Con- 
sequently, the structure of the solutions will be similar to the one-stream model 
considered in $2. However, the mathematics is much more tedious. The details are 
given in Bechert (1982). 

The equation for u, corresponding to (19) for the one-stream case reads : 

with 

and x" = W X / ~ , .  In these equations o,, p1 are mean flow velocity and density above 
the shear layer and U 2 ,  p2 are the same quantities below the shear layer. We assume 
that U ,  > 0,; u2 is the fluctuation velocity just below the shear layer. All other 
quantities are defined as before. For wx/U2 > 1,  whcre the decaying instability wave 
becomes unimportant, we obtain a somewhat simplified equation for the modulus of 

We find a decreased amplification rate in the downstream direction if the density of 
the faster stream is higher and if the velocity difference between the two streams 
decreases. The susceptibility of the shear layer is also changed, but less dramatically 
(see the denominator of (26)), with changing velocities and densities. However, if we 
have such strong differences in density as between air and water then also jet 
amplification and sensitivity will change very significantly. 

For comparison with the experiments in the second part of this paper (Bechert & 
Stahl 1988) we consider also the particular case with p1 = p2 = p and U, = 0.10,. 
Taking the modulus of u2 from (24), we obtain after some intermediate calculations 

4. The relative importance of the edge region 
In  this and the following sections we confine our considerations again to the one- 

stream case with no flow above the shear layer. There is no particular difficulty, 
however, to extend all following considerations to the case of having a different 
stream on each side of the shear layer. In $2.2 it had been mentioned that under 
almost all conceivable circumstances, a parabolic pressure field is produced close to 
the plate edge. The relevance of this region to the shear layer excitation will be shown 
with a simple model (see figure 3). The shear-layer velocity zil far downstream of the 
edge will be determined if a pulsating (two-dimensional) monopole source is located 
a t  different positions : ( a )  close to the shear layer, (b)  above the edge or ( c )  upstream 
of the edge (see figure 3). In  the following calculation we shall only consider the 
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FIGURE 3. Shear-layer excitation by a monopole source. 

amplified instability wave constituent and not the decaying one, because this is 
irrelevant at great distances x 9 O,/o. We have from (11) with C, = C, = 0 :  

w 
A --(i+l) .  
- u, with 

If the upper boundary of the integral in (11) is set equal to infinity, like in (28), the 
total influence of the excitation is included. This expansion will provide the 
magnitude of the instability wave downstream of the interaction region with the 
monopole field. Bechert & Michel (1975) give the induced field of a monopole above 
a semi-infinite plate. We have for vlf 

Q 11 x+r,  
47c 

Vlf = --(2(?"()-xo))5- 
xi [(x - xo)2 + y 3  ' 

with r," = xi+& and Q being the source strength Q = QOe-i"t. The last term of (29) 
can be split into two parts 

with 

T 
(30) 

I zo = x,, + iy, ; = x,, - iy, ; 

We are left with igtegrals of the type 

The solution of the integral in (32) can be found in tables for Laplace transforms or 
in Abramovitz & Stegun (1970). We end up with the following analytic solution7 

t This solution differs by the coefficient 4 from a solution given previously (Bechert & Michel 
1975), where this coefficient had been omitted erroneously. 
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The solution contains x only in the instability-wave term ehiX, but the coeficient 
governing the magnitude of these waves is fairly complex. We shall, therefore, 
expand the solution for two typical cases, i.e. an excitation by a monopole source 
farther away from the lip ( r o w l o  % 1) and an excitation directly a t  the lip of the 
semi-infinite plate. 

For the excitation a t  large distances, we have to expand the complex error 
functions for large arguments. If we take only the first term of the series expansion, 
we find after some intermediate calculations for the modulus of vl :  

The first part of this equation closely resembles the excitation velocity in the 
neighbourhood of the plate edge 

1 
Vlf = -- Q sinp.g.7 forx < ro. 

2x roY XZ 

One would obtain the following expression : 

(35) 

if one calculated the excitation by the parabolic field a t  the plate edge, (35), alone. 
Therefore, the expression in brackets in (34) reflects the additional interaction with 
the source field farther downstream of the plate edge. The deviations from the pure 
interaction a t  the plate edge become small if wro/Uo > 1. The conclusion from this is 
that the parabolic field a t  the plate edge dominates if the source is farther away from 
the edge. Consider the situation shown in figure 3. In  which location (a) ,  (b)  or ( c )  of 
the source will the interaction be the strongest? Equation (34) will give a clear 
answer: a t  ( c ) ,  upstream of the shear layer! 

In  that context an interesting question is how far an ' exterior excitation ' can come 
from the turbulent shear layer itself downstream of the plate edge in a real flow 
situation. In  our model, the pressure sources of the shear-layer motion lie in the y = 
0-plane. Therefore, in this model, no feedback from the downstream perturbations is 
possible ( s i n p  = 0). However, in a real situation V z p  = 0 is still valid outside the 
shear layer. The pressure sources are in a region of small 9. Therefore, a very weak 
feedback of the downstream turbulent flow is possible. This consideration is not as 
na'ive as it seems a t  first glance, because the equation V 2 p  = -2p(aO/ay)(av/ax) is 
also valid in three dimensions. The source term on the right-hand side might look 
slightly different in a nonlinear flow situation, but the concept of having linearly 
superposable pressure sources in the shear layer will not break down, because the 
pressure is a linear quantity in all our equations, and deviations of this linearity will 
occur only if the pressure perturbation is of the same order as the ambient gas 
pressure. Anyway, (34) shows clearly why shear layers are highly sensitive to 
perturbations (such as sound) coming from upstream and not very sensitive to 
perturbations having their origin downstream of the edge in the shear layer. 

Those who are familiar with experiments on excited jets know that an excitation 
close to the lip is very eficient. The preceding calculations did not consider this case 
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FIQTJRE 4. Real edge excitation configuration. 

because it was assumed that w r o / U o  9 1. On the other hand, (33) can be also 
expanded for wro/ lJo < 1, which would include the lip-excitation case. 

After some intermediate calculations we find 

w 
h - - ( i + l )  
- u, with 

and valid for wr,,/Oo 4 1 and wx/lJo 9 1. 
There is some interesting physics hidden in (37). Assume that Iyo All + + 0 and 

(ro A,); sin!$ + 0. Then we have a source just above the shear layer a t  positive xo. The 
source acts then as a &function with strength +Q on the shear layer. !jQ is just the flux 
which penetrates through the shear-layer plane. With this in mind we reconsider the 
general solution for the shear-layer motion, ( I l ) ,  with C, = C ,  = 0. For wlf we 
have 

With (1 1 )  we find the complete solution at once : 

(38) wlp = - ~ Q 6 ( x - x o )  a t  y = +O. 

For the pure lip excitation with In, xo( --f 0 we have a simple analytic solution which 
might be utilized if the free shear layer is excited just a t  the plate edge 

Also the u-distribution in the whole ambient field can be written in closed form. It 
contains exponential integrals of complex argument for the induced field of the 
instability waves truncated a t  x = 0 (wl = 0 for x < 0) and the induced field of the 
source (see Bechert & Michel 1974 ; Bechert 1982). For distances farther downstream, 
we have an extremely simple equation for the magnitude of the instability waves, 
where lwll = 1w21 = lull = Iu,I. We find 

and with the introduction of the decay in the y-direction 
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Q is the volume flux (say, in m”s) of the excitation source. In  a real situation with 
an arrangement like the one shown in figure 4 we suspect that more than half of the 
volume flux Q penetrates through the y = 0 plane. Therefore, the efficiency might bc 
even slightly higher than suggested by (42). 

5. Theory pertaining to the experiments 
This section deals with theoretical problems arising from an experiment which 

inevitably cannot be carried out under completely ideal conditions. One such 
deviation is the presence of additional walls in a typical experiment with a shear 
layer in the middle of a rectangular channel. Another limitation to the validation of 
our theory is the presence of a shear layer of finite thickness in a real experiment. 

5.1. Shear layer in a channel 
It is not possible to produce an infinitely wide stream in an experiment. Therefore, 
we have to investigate what the influence of the finite dimensions of an experimental 
set-up might be. A typical configuration is a shear layer in the centreline of a channel 
with rectangular cross-section. Owing to the presence of the additional channel walls 
on both sides of the shear layer we will find certain deviations. A detailed 
investigation (Bechert 1982) has shown that in particular the excitation field is 
changed. Instead of having vlf cc l / x i  (see (18)), we find by virtue of conformal 
mapping 

where d is the half-width of the channel. This means that close to  the plate edge the 
excitation is still parabolic and proportional to l/d, whereas farther downstream it 
decays exponentially. The new excitation field can be inserted into the general 
solution, (11). Downstream of the interaction region at the plate edge one can 
calculate an analytic solution which contains gamma functions of complex argument 
(Bechert 1982). However, we can find a much simpler solution for the practically 
important case where the wavelength of the instability waves is much smaller than 
the channel half-width d.  In  this case we obtain by an expansion of the analytic 
solution 

The last term in brackets of this equation reflects the influence of the presence of the 
walls. The theory also provides a simple analytic solution for the case when the two 
microphones sensing ApI2 are moved upstream to a location where the pressure field 
is not parabolic any more due to the influence of the channel walls. In  this case the 
quantity 1; in (43) and (44) has to be replaced by the expression: 

The detailed calculations leading to this result are given in Bechert (1982). 

5.2. Finite shear-layer thickness eSfeects 
There is not yet any direct way to test the limits of our mathematical model if we 
consider the validity range towards increasing frequencies (or Strouhal numbers). 
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FIGURE 5. Amplification rate (A ,@)  and wavenumber (A ,@)  of a shear layer with finite thickness, 
according to Michalke (1965). 

However, if we compare our case to a shear layer extending from x = - co to 
x = + 00, we can utilize the results of conventional stability theory to estimate where 
our approach becomes invalid. From previous work (Michalke 1965 ; Freymuth 1966) 
it can be concluded that wavenumber and downstream amplification rate of 
(infinitely extended) shear layers of finite thickness deviate with increasing Strouhal 
numbers S,  from the predicted values for an infinitesimally thin shear layer. The 
amplification rate and the phase speed, according to Michalke (1965) are given in 
figure 5. 

The data in figure 5 refer to a hyperbolic tangent mean velocity profile. It can be 
seen that for increasing S, the deviations in the wavenumber are much more 
significant than for the amplification rate. An increased wavenumber also causes an 
enhanced decay of the induced velocity field in the y-direction. 

For further sophistication, the combined influence of entrainment and finite shear- 
layer thickness can also be taken into account, using the work of Monkewitz & 
Huerre (1982), where computations are given for a shear layer between two streams 
of different velocities. 
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198) and by the Deutsche Forschungsgemeinschaft (Contract Be 889/1- 1). The field 
calculations in $2.3 are a repetition of earlier computations carried out by Dr M. 
Nallasamy (University of Houston). The author was encouraged by Professor A. K. 
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also indebted to Dr W. F. King, DFVLR Berlin, for a careful review of this paper. 
The author appreciates also the advice of Professor N. Nullschnall and Dr N. Norgel 
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